關鍵詞 |
PCB阻抗板加工,多層PCB線路板加工,PCB4層板廠商,撓性電路板 |
面向地區 |
阻燃特性 |
VO板 |
|
絕緣層厚度 |
常規板 |
層數 |
多面 |
基材 |
銅 |
絕緣材料 |
有機樹脂 |
絕緣樹脂 |
環氧樹脂(EP) |
軟硬結合板的優缺點:
軟硬結合板,就是柔性線路板與硬性線路板,經過壓合等工序,按相關工藝要求組合在一起,形成的具有FPC特性與PCB特性的線路板。
因為軟硬結合板是FPC與PCB的組合,軟硬結合板的生產應同時具備FPC生產設備與PCB生產設備。
,由電子工程師根據需求畫出軟性結合板的線路與外形,然后,下發到可以生產軟硬結合板的工廠,經過CAM工程師對相關文件進行處理、規劃,然后安排FPC產線生產所需FPC、PCB產線生產PCB,這兩款軟板與硬板出來后,按照電子工程師的規劃要求,將FPC與PCB經過壓合機無縫壓合,再經過一系列細節環節,終就制成了軟硬結合板。
很重要的一個環節,應為軟硬結合板難度大,細節問題多,在出貨之前,一般都要進行全檢,因其價值比較高,以免讓供需雙方造成相關利益損失。
優點:軟硬結合板同時具備FPC的特性與PCB的特性,因此,它可以用于一些有特殊要求的產品之中,既有一定的撓性區域,也有一定的剛性區域,對節省產品內部空間,減少成品體積,提高產品性能有很大的幫助。
缺點:軟硬結合板生產工序繁多,生產難度大,良品率較低,所投物料、人力較多,因此,其價格比較貴,生產周期比較長。
高速PCB設計指南之三
第三篇 高速PCB設計
(一)、電子系統設計所面臨的挑戰
隨著系統設計復雜性和集成度的大規模提高,電子系統設計師們正在從事100MHZ以上的電路設計,總線的工作頻率也已經達到或者超過50MHZ,有的甚至超過100MHZ。目前約50% 的設計的時鐘頻率超過50MHz,將近20% 的設計主頻超過120MHz。
當系統工作在50MHz時,將產生傳輸線效應和信號的完整性問題;而當系統時鐘達到120MHz時,除非使用高速電路設計知識,否則基于傳統方法設計的PCB將無法工作。因此,高速電路設計技術已經成為電子系統設計師采取的設計手段。只有通過使用高速電路設計師的設計技術,才能實現設計過程的可控性。
(二)、什么是高速電路
通常認為如果數字邏輯電路的頻率達到或者超過45MHZ~50MHZ,而且工作在這個頻率之上的電路已經占到了整個電子系統一定的份量(比如說1/3),就稱為高速電路。
實際上,信號邊沿的諧波頻率比信號本身的頻率高,是信號快速變化的上升沿與下降沿(或稱信號的跳變)引發了信號傳輸的非預期結果。因此,通常約定如果線傳播延時大于1/2數字信號驅動端的上升時間,則認為此類信號是高速信號并產生傳輸線效應。
信號的傳遞發生在信號狀態改變的瞬間,如上升或下降時間。信號從驅動端到接收端經過一段固定的時間,如果傳輸時間小于1/2的上升或下降時間,那么來自接收端的反射信號將在信號改變狀態之前到達驅動端。反之,反射信號將在信號改變狀態之后到達驅動端。如果反射信號很強,疊加的波形就有可能會改變邏輯狀態。
(三)、高速信號的確定
上面我們定義了傳輸線效應發生的前提條件,但是如何得知線延時是否大于1/2驅動端的信號上升時間?一般地,信號上升時間的典型值可通過器件手冊給出,而信號的傳播時間在PCB設計中由實際布線長度決定。下圖為信號上升時間和允許的布線長度(延時)的對應關系?!?br />
PCB 板上每單位英寸的延時為 0.167ns.。但是,如果過孔多,器件管腳多,網線上設置的約束多,延時將增大。通常高速邏輯器件的信號上升時間大約為0.2ns。如果板上有GaAs芯片,則大布線長度為7.62mm。
設Tr為信號上升時間, Tpd 為信號線傳播延時。如果Tr≥4Tpd,信號落在安全區域。如果2Tpd≥Tr≥4Tpd,信號落在不確定區域。如果Tr≤2Tpd,信號落在問題區域。對于落在不確定區域及問題區域的信號,應該使用高速布線方法。
(四)、什么是傳輸線
PCB板上的走線可等效為下圖所示的串聯和并聯的電容、電阻和電感結構。串聯電阻的典型值0.25-0.55 ohms/foot,因為絕緣層的緣故,并聯電阻阻值通常很高。將寄生電阻、電容和電感加到實際的PCB連線中之后,連線上的終阻抗稱為特征阻抗Zo。線徑越寬,距電源/地越近,或隔離層的介電常數越高,特征阻抗就越小。如果傳輸線和接收端的阻抗不匹配,那么輸出的電流信號和信號終的穩定狀態將不同,這就引起信號在接收端產生反射,這個反射信號將傳回信號發射端并再次反射回來。隨著能量的減弱反射信號的幅度將減小,直到信號的電壓和電流達到穩定。這種效應被稱為振蕩,信號的振蕩在信號的上升沿和下降沿經??梢钥吹?。
(五)、傳輸線效應
基于上述定義的傳輸線模型,歸納起來,傳輸線會對整個電路設計帶來以下效應。
· 反射信號Reflected signals
· 延時和時序錯誤Delay & Timing errors
· 多次跨越邏輯電平門限錯誤False Switching
· 過沖與下沖Overshoot/Undershoot
· 串擾Induced Noise (or crosstalk)
· 電磁輻射EMI radiation
5.1 反射信號
如果一根走線沒有被正確終結(終端匹配),那么來自于驅動端的信號脈沖在接收端被反射,從而引發不預期效應,使信號輪廓失真。當失真變形非常顯著時可導致多種錯誤,引起設計失敗。同時,失真變形的信號對噪聲的敏感性增加了,也會引起設計失敗。如果上述情況沒有被足夠考慮,EMI將顯著增加,這就不單單影響自身設計結果,還會造成整個系統的失敗。
反射信號產生的主要原因:過長的走線;未被匹配終結的傳輸線,過量電容或電感以及阻抗失配。
5.2 延時和時序錯誤
信號延時和時序錯誤表現為:信號在邏輯電平的高與低門限之間變化時保持一段時間信號不跳變。過多的信號延時可能導致時序錯誤和器件功能的混亂。
通常在有多個接收端時會出現問題。電路設計師確定壞情況下的時間延時以確保設計的正確性。信號延時產生的原因:驅動過載,走線過長。
5.3 多次跨越邏輯電平門限錯誤
信號在跳變的過程中可能多次跨越邏輯電平門限從而導致這一類型的錯誤。多次跨越邏輯電平門限錯誤是信號振蕩的一種特殊的形式,即信號的振蕩發生在邏輯電平門限附近,多次跨越邏輯電平門限會導致邏輯功能紊亂。反射信號產生的原因:過長的走線,未被終結的傳輸線,過量電容或電感以及阻抗失配。
5.4 過沖與下沖
過沖與下沖來源于走線過長或者信號變化太快兩方面的原因。雖然大多數元件接收端有輸入保護二極管保護,但有時這些過沖電平會遠遠超過元件電源電壓范圍,損壞元器件。
5.5 串擾
串擾表現為在一根信號線上有信號通過時,在PCB板上與之相鄰的信號線上就會感應出相關的信號,我們稱之為串擾。
信號線距離地線越近,線間距越大,產生的串擾信號越小。異步信號和時鐘信號更容易產生串擾。因此解串擾的方法是移開發生串擾的信號或屏蔽被嚴重干擾的信號。
5.6 電磁輻射
EMI(Electro-Magnetic Interference)即電磁干擾,產生的問題包含過量的電磁輻射及對電磁輻射的敏感性兩方面。EMI表現為當數字系統加電運行時,會對周圍環境輻射電磁波,從而干擾周圍環境中電子設備的正常工作。它產生的主要原因是電路工作頻率太高以及布局布線不合理。目前已有進行 EMI仿真的軟件工具,但EMI仿真器都很昂貴,仿真參數和邊界條件設置又很困難,這將直接影響仿真結果的準確性和實用性。通常的做法是將控制EMI的各項設計規則應用在設計的每一環節,實現在設計各環節上的規則驅動和控制。
(六)、避免傳輸線效應的方法
針對上述傳輸線問題所引入的影響,我們從以下幾方面談談控制這些影響的方法。
6.1 嚴格控制關鍵網線的走線長度
如果設計中有高速跳變的邊沿,就考慮到在PCB板上存在傳輸線效應的問題?,F在普遍使用的很高時鐘頻率的快速集成電路芯片更是存在這樣的問題。解決這個問題有一些基本原則:如果采用CMOS或TTL電路進行設計,工作頻率小于10MHz,布線長度應不大于7英寸。工作頻率在50MHz布線長度應不大于1.5英寸。如果工作頻率達到或超過75MHz布線長度應在1英寸。對于GaAs芯片大的布線長度應為0.3英寸。如果超過這個標準,就存在傳輸線的問題。
6.2 合理規劃走線的拓撲結構
解決傳輸線效應的另一個方法是選擇正確的布線路徑和終端拓撲結構。走線的拓撲結構是指一根網線的布線順序及布線結構。當使用高速邏輯器件時,除非走線分支長度保持很短,否則邊沿快速變化的信號將被信號主干走線上的分支走線所扭曲。通常情形下,PCB走線采用兩種基本拓撲結構,即菊花鏈(Daisy Chain)布線和星形(Star)分布。
對于菊花鏈布線,布線從驅動端開始,依次到達各接收端。如果使用串聯電阻來改變信號特性,串聯電阻的位置應該緊靠驅動端。在控制走線的高次諧波干擾方面,菊花鏈走線效果好。但這種走線方式布通率低,不容易布通。實際設計中,我們是使菊花鏈布線中分支長度盡可能短,安全的長度值應該是:Stub Delay <= Trt *0.1.
例如,高速TTL電路中的分支端長度應小于1.5英寸。這種拓撲結構占用的布線空間較小并可用單一電阻匹配終結。但是這種走線結構使得在不同的信號接收端信號的接收是不同步的。
星形拓撲結構可以有效的避免時鐘信號的不同步問題,但在密度很高的PCB板上手工完成布線十分困難。采用自動布線器是完成星型布線的好的方法。每條分支上都需要終端電阻。終端電阻的阻值應和連線的特征阻抗相匹配。這可通過手工計算,也可通過CAD工具計算出特征阻抗值和終端匹配電阻值?!?br />
在上面的兩個例子中使用了簡單的終端電阻,實際中可選擇使用更復雜的匹配終端。種選擇是RC匹配終端。RC匹配終端可以減少功率消耗,但只能使用于信號工作比較穩定的情況。這種方式適合于對時鐘線信號進行匹配處理。其缺點是RC匹配終端中的電容可能影響信號的形狀和傳播速度。
串聯電阻匹配終端不會產生額外的功率消耗,但會減慢信號的傳輸。這種方式用于時間延遲影響不大的總線驅動電路?! 〈撾娮杵ヅ浣K端的優勢還在于可以減少板上器件的使用數量和連線密度。
后一種方式為分離匹配終端,這種方式匹配元件需要放置在接收端附近。其優點是不會拉低信號,并且可以很好的避免噪聲。典型的用于TTL輸入信號(ACT,HCT, FAST)。
此外,對于終端匹配電阻的封裝型式和安裝型式也考慮。通常SMD表面貼裝電阻比通孔元件具有較低的電感,所以SMD封裝元件成為。如果選擇普通直插電阻也有兩種安裝方式可選:垂直方式和水平方式。
垂直安裝方式中電阻的一條安裝管腳很短,可以減少電阻和電路板間的熱阻,使電阻的熱量更加容易散發到空氣中。但較長的垂直安裝會增加電阻的電感。水平安裝方式因安裝較低有更低的電感。但過熱的電阻會出現漂移,在壞的情況下電阻成為開路,造成PCB走線終結匹配失效,成為潛在的失敗因素。
6.3 抑止電磁干擾的方法
很好地解決信號完整性問題將改善PCB板的電磁兼容性(EMC)。其中非常重要的是PCB板有很好的接地。對復雜的設計采用一個信號層配一個地線層是十分有效的方法。此外,使電路板的外層信號的密度小也是減少電磁輻射的好方法,這種方法可采用"表面積層"技術"Build-up"設計制做PCB來實現。表面積層通過在普通工藝 PCB 上增加薄絕緣層和用于貫穿這些層的微孔的組合來實現,電阻和電容可埋在表層下,單位面積上的走線密度會增加近一倍,因而可降低 PCB的體積。PCB面積的縮小對走線的拓撲結構有的影響,這意味著縮小的電流回路,縮小的分支走線長度,而電磁輻射近似正比于電流回路的面積;同時小體積特征意味著高密度引腳封裝器件可以被使用,這又使得連線長度下降,從而電流回路減小,提高電磁兼容特性。
6.4 其它可采用技術
為減小集成電路芯片電源上的電壓瞬時過沖,應該為集成電路芯片添加去耦電容。這可以有效去除電源上的毛刺的影響并減少在印制板上的電源環路的輻射。
當去耦電容直接連接在集成電路的電源管腿上而不是連接在電源層上時,其平滑毛刺的效果好。這就是為什么有一些器件插座上帶有去耦電容,而有的器件要求去耦電容距器件的距離要足夠的小。
任何高速和高功耗的器件應盡量放置在一起以減少電源電壓瞬時過沖。
如果沒有電源層,那么長的電源連線會在信號和回路間形成環路,成為輻射源和易感應電路。
走線構成一個不穿過同一網線或其它走線的環路的情況稱為開環。如果環路穿過同一網線其它走線則構成閉環。兩種情況都會形成天線效應(線天線和環形天線)。天線對外產生EMI輻射,同時自身也是敏感電路。閉環是一個考慮的問題,因為它產生的輻射與閉環面積近似成正比。
結束語
高速電路設計是一個非常復雜的設計過程。本文所闡述的方法就是針對解決這些高速電路設計問題的。此外,在進行高速電路設計時有多個因素需要加以考慮,這些因素有時互相對立。如高速器件布局時位置靠近,雖可以減少延時,但可能產生串擾和顯著的熱效應。因此在設計中,需權衡各因素,做出全面的折衷考慮;既滿足設計要求,又降低設計復雜度。高速PCB設計手段的采用構成了設計過程的可控性,只有可控的,才是可靠的,也才能是成功的!
PCB電路板無鉛噴錫與有鉛噴錫除了環保差異外,還有哪些區別呢?
隨著電子行業不斷的發展,PCB的技術水平也在水漲船高,常見的表面處理工藝就有噴錫,沉金,鍍金,OSP等;其中噴錫分為無鉛噴錫和有鉛噴錫。那么,PCB電路板無鉛噴錫與有鉛噴錫的區別在哪?
1、無鉛噴錫屬于環保類工藝,不含有害物質"鉛",熔點在218度左右;錫爐溫度需控制在280-300度;過波峰焊溫度需控制在260度左右;過回流焊溫度在260-270度左右。
2、有鉛噴錫不屬于環保類工藝,含有害物質"鉛",熔點183度左右;錫爐溫度需控制在245-260度;過波峰焊溫度需控制在250度左右;過回流焊溫度在245-255度左右。
3、從錫的表面看,有鉛錫比較亮,無鉛錫比較暗淡;無鉛板的浸潤性要比有鉛板的差一點。
4、無鉛錫的鉛含量不超過0.5 ,有鉛錫的鉛含量達到37。
5、鉛會提高錫線在焊接過程中的活性,有鉛錫線相對比無鉛錫線好用;不過鉛有毒,長期使用對人體不好。無鉛錫比有鉛錫熔點高,焊接點會牢固很多。
6、在pcb板表面處理中,通常做無鉛噴錫和有鉛噴錫的價格是一樣的,沒有區別。
高精密度(HDI板)電路板的耐熱性介紹
HDI板的耐熱性能是HDI可靠性能中重要的一個項目,HDI板的板厚變得越來越薄,對其耐熱性能的要求也越來越高。無鉛化進程的推進,也提高了HDI板耐熱性能的要求,而且由于HDI板在層結構等方面不同于普通多層通孔PCB板,因此HDI板的耐熱性能與普通多層通孔PCB板相比有所不同,一階HDI板典型結構。HDI板的耐熱性能缺陷主要是爆板和分層。到目前為止,根據多種材料以及多款HDI板的耐熱性能測試的經驗,發現HDI板發生爆板機率大的區域是密集埋孔的上方以及大銅面的下方區域。
耐熱性是指PCB抵抗在焊接過程中產生的熱機械應力的能力, PCB在耐熱性能測試中發生分層的機制一般包括以下幾種:
1) 測試樣品內部不同材料在溫度變化時,膨脹和收縮性能不同而在樣品內部產生內部熱機械應力,從而導致裂縫和分層的產生。
2) 測試樣品內部的微小缺陷(包括空洞,微裂紋等),是熱機械應力集中所在,起到應力的放大器的作用。在樣品內部應力的作用下,更加容易導致裂縫或分層的產生。
3) 測試樣品中揮發性物質(包括有機揮發成分和水),在高溫和劇烈溫度變化時,急劇膨脹產生的內部蒸汽壓力,當膨脹的蒸汽壓力到達測試樣品內部的微小缺陷(包括空洞,微裂紋等)時,微小缺陷對應的放大器作用就會導致分層。
HDI板容易在密集埋孔的上方發生分層,這是由于HDI板在埋孔分布區域特殊的結構所導致的。有無埋孔區域的應力分析如下表1。無埋孔區域(結構1)在耐熱性能測試受熱膨脹時,在同一平面上各個位置的Z方向的膨脹量都是均勻的,因此不會存在由于結構的差異造成的應力集中區域。當區域中設計有埋孔且埋孔鉆在基材面上(結構2)時,在埋孔與埋孔之間的A-A截面上,由于基材沒有收到埋孔在Z方向的約束,因而膨脹量較大,而在埋孔和焊盤所在的B-B截面上,由于基材受到埋孔在Z方向的約束,因而膨脹量較小,這三處膨脹量的差異,在埋孔焊盤與HDI介質和塞孔樹脂交界處和附近區域造成應力集中,從而比較容易形成裂縫和分層。
HDI板容易在外層大銅面的下方發生分層,這是由于在貼裝和焊接時,PCB受熱,揮發性物質(包括有機揮發成分和水)急劇膨脹,外層大銅面阻擋了揮發性物質(包括有機揮發成分和水)的及時逸出,因此產生的內部蒸汽壓力,當膨脹的蒸汽壓力到達測試樣品內部的微小缺陷(包括空洞,微裂紋等)時,微小缺陷對應的放大器作用就會導致分層。
如何評估汽車HDI PCB制造商
電子行業的蓬勃發展推動了眾多行業的快速發展。近年來,電子產品在汽車工業中的應用日益廣泛。傳統的汽車工業在機械,動力,液壓和傳動方面進行了更多的努力。但是,現代汽車工業更多地依賴電子應用,而這些電子應用在汽車中發揮著越來越重要和潛在的作用。自動電氣化全部用于處理,感測,信息傳輸和記錄,而沒有印制電路板(PCB)則無法實現。由于汽車現代化和數字化的要求,以及人類對汽車安全性,舒適性,簡單操作和數字化的要求,PCB已廣泛應用于汽車行業,高密度互連(HDI)PCB,可能帶有跨層盲孔或雙層結構。
為了實現汽車HDI PCB的高可靠性和安全性,HDI PCB制造商遵循嚴格的策略和措施,這是本文關注的。
汽車PCB類型
在汽車電路板中,可以使用傳統的單層PCB,雙層PCB和多層PCB,而近年來HDI PCB的廣泛應用已成為汽車電子產品的。普通HDI PCB與汽車HDI PCB之間確實存在本質區別:前者強調實用性和多功能性,為消費電子產品提供服務,而后者則致力于可靠性,安全性和。
有必要說明一下,因為汽車涵蓋了汽車,卡車或卡車等各種各樣的汽車,要求對不同的性能期望和功能有不同的要求,所以本文將要討論的法規和措施只是一些通用規則,不包括那些規則。特別案例。
汽車HDI PCB的分類和應用
HDI PCB可以分為單層HDI PCB,雙層積層PCB和三層積層PCB.在此,層是指預浸料的層。
汽車電子產品通常在兩類應用:
a.在與車輛的機械系統(例如發動機,底盤和車輛數字控制)配合使用之前,汽車電子控制設備將無法有效運行,特別是電子燃油噴射系統,防抱死制動系統(ABS),防滑控制(ASC) ,牽引力控制,電子控制懸架(ECS),電子自動變速器(EAT)和電子助力轉向(EPS)。
b.可以在汽車環境中立使用且與汽車性能無關的車載汽車設備包括汽車信息系統或車輛計算機,GPS系統,汽車視頻系統,車載通信系統和Internet設備功能,這些功能由HDI PCB支持的設備實現,這些設備負責信號傳輸和大量控制。
對汽車HDI PCB制造商的要求
由于高可靠性和汽車HDI印制電路板的安全性,汽車HDI PCB制造商符合高層次要求:
a.汽車HDI PCB制造商堅持在判斷或支持PCB制造商的管理水平中起關鍵作用的集成管理系統和質量管理體系。某些系統在被第三方身份驗證之前無法歸PCB制造商所有。例如,汽車PCB制造商通過ISO9001和ISO / IATF16949認證。
b.HDI PCB制造商具備扎實的技術和較高的HDI制造能力。具體而言,從事汽車電路板制造的制造商制造線寬/間距至少為75μm/75μm且具有兩層結構的電路板。公認的是,HDI PCB制造商具有至少1.33的工藝能力指數(CPK)和至少1.67的設備制造能力(CMK)。除非獲得客戶的認可和確認,否則不得在以后的制造中進行任何修改。
c.汽車HDI PCB制造商在選擇PCB原材料時遵循嚴格的規則,因為它們在確定終PCB的可靠性和性能中起著關鍵作用。
汽車HDI PCB的材料要求
?核心板和半固化片。它們是制造汽車HDI PCB的基本,關鍵的元素。當涉及HDI PCB的原材料時,核心板和預浸料是主要考慮因素。通常,HDI核心板和介電層都相對較薄。因此,一層預浸料足以在消費類HDI板上使用。但是,汽車HDI PCB依賴于至少兩層預浸料的層壓,因為如果發生空腔或粘合劑不足,則單層的預浸料可能會導致絕緣電阻降低。之后,終結果可能是整個板子或產品的故障。
?阻焊膜。作為直接覆蓋在表面電路板上的保護層,阻焊層也起著與核心板和預浸料相同的重要作用。除保護外部電路外,阻焊層在產品的外觀,質量和可靠性方面也起著至關重要的作用。因此,汽車電路板上的阻焊層符合嚴格的要求。阻焊膜通過多項有關可靠性的測試,包括儲熱測試和剝離強度測試。
汽車HDI PCB材料的可靠性測試
合格的HDI PCB制造商絕不會認為材料選擇是理所當然的。相反,他們對電路板的可靠性進行一些測試。有關汽車HDI PCB材料可靠性的主要測試包括CAF(導電陽極絲)測試,高溫和低溫熱沖擊測試,天氣溫度循環測試和儲熱測試。
?CAF測試。它用于測量兩個導體之間的絕緣電阻。該測試涵蓋許多測試值,例如層之間的小絕緣電阻,通孔之間的小絕緣電阻,埋孔之間的小絕緣電阻,盲孔之間的小絕緣電阻以及并聯電路之間的小絕緣電阻。
?高溫和低溫熱沖擊測試。此測試旨在測試小于一定百分比的電阻變化率。具體而言,該測試中提到的參數包括通孔之間的電阻變化率,埋孔之間的電阻變化率和盲孔之間的電阻變化率。
?氣候溫度循環測試。被測板需要在回流焊接之前進行預處理。在-40℃±3℃至140℃±2℃的溫度范圍內,電路板在低溫度和高溫度下保持15分鐘。結果,合格的電路板不會發生層壓,白點或爆炸。
?高溫存儲測試。該測試主要針對阻焊層的可靠性,特別是其剝離強度。就阻焊層的判斷而言,該測試被認為是嚴格的。
根據以上介紹的測試要求,如果基材或原材料不能滿足客戶要求,則可能會發生潛在的風險。因此,是否對材料進行測試可能是確定合格的HDI PCB制造商的關鍵因素。
可以使用許多策略和措施來判斷汽車HDI PCB制造商,包括材料供應商認證,過程中的技術條件以及參數確定和附件的應用等。為尋找可靠的HDI PCB制造商,它們可能是重要的組成部分。確定和判斷其可靠性作為參考。
超實用的高頻PCB電路設計70問答 之二
21.在電路板尺寸固定的情況下,如果設計中需要容納更多的功能,就往往需要提高 PCB 的走線密度,但是這樣有可能導致走線的相互干擾增強,同時走線過細也使阻抗無法降低,請介紹在高速(>100MHz)高密度 PCB 設計中的技巧?
在設計高速高密度 PCB 時,串擾(crosstalk interference)確實是要特別注意的,因為它對時序(timing)與信號完整性(signal integrity)有很大的影響。以下提供幾個注意的地方:
控制走線特性阻抗的連續與匹配。
走線間距的大小。一般常看到的間距為兩倍線寬。可以透過仿真來知道走線間距對時序及信號完整性的影響,找出可容忍的小間距。不同芯片信號的結果可能不同。
選擇適當的端接方式。
避免上下相鄰兩層的走線方向相同,甚至有走線正好上下重疊在一起,因為這種串擾比同層相鄰走線的情形還大。
利用盲埋孔(blind/buried via)來增加走線面積。但是 PCB 板的制作成本會增加。在實際執行時確實很難達到完全平行與等長,不過還是要盡量做到。
除此以外,可以預留差分端接和共模端接,以緩和對時序與信號完整性的影響。
22.電路板 DEBUG 應從那幾個方面著手?
就數字電路而言,先依序確定三件事情: 1. 確認所有電源值的大小均達到設計所需。有些多重電源的系統可能會要求某些電源之間起來的順序與快慢有某種規范。 2. 確認所有時鐘信號頻率都工作正常且信號邊緣上沒有非單調(non-monotonic)的問題。3. 確認 reset 信號是否達到規范要求。 這些都正常的話,芯片應該要發出個周期(cycle)的信號。接下來依照系統運作原理與 bus protocol 來 debug。
23、濾波時選用電感,電容值的方法是什么?
電感值的選用除了考慮所想濾掉的噪聲頻率外,還要考慮瞬時電流的反應能力。如 果 LC 的輸出端會有機會需要瞬間輸出大電流,則電感值太大會阻礙此大電流流經此電感的速度,增加紋波噪聲(ripple noise)。電容值則和所能容忍的紋波噪聲規范值的大小有關。紋波噪聲值要求越小,電容值會較大。而電容的ESR/ESL 也會有影響。另外,如果這 LC 是放在開關式電源(switching regulation power)的輸出端時,還要注意此 LC 所產生的極點零點(pole/zero)對負反饋控制(negative feedback control)回路穩定度的影響。
24、模擬電源處的濾波經常是用 LC 電路。但是為什么有時 LC 比 RC 濾波效果差?
LC與 RC濾波效果的比較考慮所要濾掉的頻帶與電感值的選擇是否恰當。因為電感的感抗(reactance)大小與電感值和頻率有關。如果電源的噪聲頻率較低,而電感值又不夠大,這時濾波效果可能不如 RC。但是,使用 RC 濾波要付出的代價是電阻本身會耗能,效率較差,且要注意所選電阻能承受的功率。
25、如何盡可能的達到 EMC 要求,又不致造成太大的成本壓力?
PCB 板上會因 EMC 而增加的成本通常是因增加地層數目以增強屏蔽效應及增加了 ferrite bead、choke等抑制高頻諧波器件的緣故。除此之外,通常還是需搭配其它機構上的屏蔽結構才能使整個系統通過 EMC的要求。以下僅就 PCB 板的設計技巧提供幾個降低電路產生的電磁輻射效應。
盡可能選用信號斜率(slew rate)較慢的器件,以降低信號所產生的高頻成分。
注意高頻器件擺放的位置,不要太靠近對外的連接器。
注意高速信號的阻抗匹配,走線層及其回流電流路徑(return current path), 以減少高頻的反射與輻射。
在各器件的電源管腳放置足夠與適當的去耦合電容以緩和電源層和地層上的噪聲。特別注意電容的頻率響應與溫度的特性是否符合設計所需。
對外的連接器附近的地可與地層做適當分割,并將連接器的地就近接到 chassis ground。
可適當運用 ground guard/shunt traces 在一些特別高速的信號旁。但要注意 guard/shunt traces 對走線特性阻抗的影響。
電源層比地層內縮 20H,H 為電源層與地層之間的距離。
深圳市賽孚電路有限公司成立于2011年,公司由多名電路板行業的級人士創建,是國內專業的PCB快件服務商之一。的交付以及過硬的產品品質贏得了國內外客戶的信任。公司是廣東電路板行業協會會員企業,是深圳高新技術認證企業。擁有完善的質量管理體系,先后通過了ISO9001、UL、RoHS認證。公司目前擁有員工270余人,廠房面積8000平米,月出貨品種6000種以上,年生產能力為150000平方米。為了滿足客戶多樣化需求,2017年公司成立了PCBA事業部,自有SMT生產線,為客戶提供PCB+SMT服務。 公司一直致力于“打造中國的PCB制造企業”,注重人才培養,倡導全員“自我經營”理念,擁有一支朝氣蓬勃、專業敬業、經驗豐富的技術、生產及管理隊伍,專注于PCB的工藝技術的研究與開發,努力提升公司在PCB專業領域內的技術水平和制造能力.
公司產品廣泛應用于通信、工業控制、計算機應用、航空航天、、醫療、測試儀器等各個領域。我們的產品包括:高精度雙面PCB線路板、PCB多層電路板、HDI電路板、PCB高頻板、陶瓷電路板等特種高難度電路板。我們的客戶分布各地,目前國外訂單占比60%以上。
“ 為客戶多想一點,為客戶多做一點,以質量為根,服務為本 ” 是賽孚電路科技公司的服務宗旨。公司通過資源整合、流程整合、部門整合;讓客戶真正感受到快捷、優質、的服務。在發展過程中,公司上下團結一心,共同奮斗,致力于創造的文化、的企業。 公司秉承 ISO9000 標準,堅持持之以恒的精神,全員參與質量改進,不斷吸納國際新技術,完善產品品質,超越客戶的需求。
————— 認證資質 —————